Ваш браузер устарел. Рекомендуем обновить его до последней версии.

МЕТОДЫ ОЧИСТКИ ВОДЫ

Методы водоподготовки должны выбираться при сопоставлении состава исходной воды и ее качества, регламен­тированного нормативными документами или определенного потребителем воды. После предварительного подбора методов очистки воды анализируются возможности и условия их применения, исходящие из поставленной задачи.

Чаще всего результат достигается поэтапным осуществлением нескольких методов. Таким образом, важными являются как выбор собственно методов обработки воды, так и их последовательность.

Методов водоподготовки - около 40. Здесь кратко рассмотрены только наиболее часто применяемые.

Осветление воды фильтрованием

Фильтрование является важнейшим этапом приготовления воды и применяется для самых различных целей. При подготовке питьевой воды, подаваемой из общественных водопроводных сетей, как правило, применяется тонкое фильтрование с использованием сетчатых фильтров с промывкой или картриджных фильтров. В технике подготовки вода из индивидуальных или поверхностных источников водоснабжения наиболее широко применяют скорые напор­ные фильтры. В качестве фильтрующего материала в зависимости от целей фильтрации применяется кварцевый пе­сок, антрацит, активированный уголь, доломит, керамзит и др. Высота фильтрующего слоя в напорных фильтрах определяется качеством исходной воды и крупностью фильтрующего материала. Скорость фильтрования зависит от качества исходной воды, природы фильтровального материала и находится в пределах от 5 до 15 м/ч.

Для восстановления фильтрующей способности загрузки, как правило, применяется обратная промывка током во­ды или водо-воздушной смесью. Объем поступающей противотоком промывной воды обеспечивает удаление налип­ших загрязнений, воздух усиливает отмывку зерен загрузки от загрязнений. Скорость промывки составляет - до 60 м/ч.

Обезжелезивание

Решение проблемы удаления железа из воды представляется довольно сложной и комплексной, в связи с этим вряд ли возможно установить какие-либо универсальные правила очистки.

Типичная картина, которая наблюдается при подъеме железистой воды из скважины, такова: вначале вода, вы­качанная из скважины, абсолютно прозрачна и кажется чистой, но проходит несколько десятков минут и вода мут­неет, приобретая специфический желтоватый цвет. Через несколько часов муть начинает оседать, образуя рыхлый осадок. Процесс осаждения может длиться несколько дней. Скорость осаждения зависит от температуры и соста­ва воды. Наличие железа можно определить и на вкус. Начиная с концентрации 1,0-1,5 мг/л вода имеет характер­ный неприятный металлический привкус. Игнорирование проблемы железа в воде оканчиваются плохо и стоит до­рого: потеря «белизны» ванн, отказ импортной бытовой техники, систем отопления и нагрева воды. В системе го­рячего водоснабжения проблемы, обусловленные повышенным содержанием железа, многократно возрастают. Уже при концентрации 0,5 мг/л идет интенсивное появление хлопьев, образующих рыхлый шлам, который забива­ет теплообменники, радиаторы, трубопроводы, сужает их проходное сечение.

Российские санитарные нормы ограничивают концентрацию железа в воде для хозяйственно-питьевых нужд в пределах 0,3 мг/л. В подземной же воде она колеблется в пределах от 0,5 до 50 мг/л. В Центральном регионе, вклю­чая Подмосковье, - от 0,5 до 10 мг/л, наиболее часто 3-5 мг/л.

В соответствии с требованиями СНиП 2.04.02-84* метод обезжелезивания воды, расчетные параметры и дозы реагентов следует принимать на основе результатов технологических изысканий, выполненных непосредственно у источника водоснабжения.

Все многообразие методов, применяемых в технологии обезжелезивания воды, можно свести к двум ос­новным типам - реагентные и безреагентные. Обезжелезивание поверхностных вод можно осуществлять лишь реагентными методами. Обезжелезивание подземных вод осуществляют фильтрованием в сочетании с одним из спо­собов предварительной обработки воды:

-  упрощенная аэрация;

-   аэрация на специальных устройствах;

-   коагуляция и осветление;

-   введение таких реагентов-окислителей, как хлор, гипохлорит натрия или кальция, озон, перманганат калия.

Метод упрощенной аэрации основан на способности воды, содержащей двухвалентное железо и раство­ренный кислород, при фильтровании через зернистый слой выделять железо на поверхности зерен, образуя каталитическую пленку из ионов и оксидов двух- и трехвалентного железа. Эта пленка, являясь катализатором окисления поступающего в загрузку железа (II), активно интенсифицирует процесс окисления и выделения же­леза из воды. Пленка представляет собой очень сильный адсорбент губчатой структуры. В самом начале про­цесса обезжелезивания при поступлении на фильтр первых порций воды, когда загрузка еще чистая, адсорб­ция соединений железа на ее поверхности происходит в мономолекулярном слое. После образования мономолекулярного слоя процесс выделения соединений железа на зернах песка не прекращается, а наоборот, уси­ливается, вследствие того, что образовавшийся монослой химически более активен, чем чистая поверхность загрузки (песка).

Описанный метод допустим при следующих количественных показателях воды:

-  общее содержание железа - до 10 мг/л (в том числе, двухвалентного железа - не менее 70 %);

-  значение рН - не менее 6,8;

-  щелочность общая - не более (1+ Fe2+ /28) ммоль/л;

-  содержание сероводорода - не более 2 мг/л;

-  перманганатная окисляемость - не более (0,15 . Fe2+ +3) мгО/л.

-  содержание аммонийных солей (по NH4-) - не более 1 мг/л;

-  содержание сульфидов (по H2S) - не более 0,2 мг/л.

Введение реагентов-окислителей

Обработка гипохлоритом натрия (NaCIO)

Обработка воды гипохлоритом натрия применяют как на больших станциях водоподготовки, так и на небольших объектах, в том числе и в частных домах.

При расчете дозы гипохлорита натрия на обезжелезивание нужно обязательно учитывать его расход на деманганацию, удаление сероводорода (если марганец и сероводород присутствуют в обрабатываемой воде) и, ког­да это требуется, обеззараживание.

В процессе окисления железа гипохлоритом натрия не происходит подкисления воды, а это очень важно для процесса фильтрации. Кроме того, раствор гипохлорита натрия (как товарный, так и электрохимический) - щелоч­ной, что благоприятно для фильтрования.

Обработка воды перманганатом калия

Метод окисления двухвалентного железа используется путем введения в исходную воду перед фильтрами ра­створа перманганата калия KMnO4. Последний может также вводиться в сочетании с гипохлоритом натрия с целью обработки сложных вод и экономии перманганата калия - достаточно дорогостоящего окислителя.

Обработка воды озоном

Один из перспективных методов окисления железа - озонирование. Озон (О3) - один из самых сильных оки­слителей. Одновременно с обеззараживанием идут процессы окисления двухвалентных железа и марганца, обес­цвечивание воды, а также ее дезодорация и улучшение органолептических свойств.

Фильтрование с применением каталитических загрузок

Фильтрование с применением каталитических загрузок - наиболее распространенный метод удаления железа и марганца, применяемый в высокопроизводительных компактных системах. Это обусловлено как коммерческими аспектами, так и высокой технологичностью процессов. Каталитические наполнители - природные материалы, со­держащие диоксид марганца или загрузки, в которые диоксид марганца введен при соответствующей обработке:

-  дробленый пиролюзит, «черный песок», сульфоуголь и МЖФ (отечественные загрузки);

-   Manganese Green Sand (MGS), Birm, МТМ (зарубежные наполнители);

Эти фильтрующие «засыпки» отличаются друг от друга как своими физическими характеристиками, так и со­держанием диоксида марганца и поэтому эффективно работают в разных диапазонах значений характеризующих воду параметров.

Механизм действия основан на способности соединений марганца сравнительно легко изменять валентное со­стояние. Двухвалентное железо в исходной воде окисляется высшими оксидами марганца. Последние восстанавли­ваются до низших ступеней окисления, а далее вновь окисляются до высших оксидов растворенным кислородом и перманганатом калия.

Впоследствии большая часть окисленного и задержанного на фильтрующем материале железа вымывается в дренаж при обратной промывке. Таким образом, слой гранулированного катализатора служит одновременно и фильтрующей средой. Для улучшения процесса окисления в воду могут добавляться дополнительные химические окислители.

При проведении процесса следует иметь в виду, что для эффективного окисления соединений железа (и мар­ганца) необходимо как наличие катализатора, который только ускоряет процесс, так и реагента-окислителя. В роли последнего может выступать растворенный кислород, высшие соединения марганца, хлор, гипохлорит. С этой точ­ки зрения разделение методов обезжелезивания (на реагентные и безреагентные) носит условный характер. В лю­бом случае в ходе реакции расходуется окислитель независимо от того, вводится он извне или входит в состав фильтрующей загрузки. В последнем случае следует определить ресурс загрузки, исходя из состава воды и ее рас­хода, а также обеспечить своевременную регенерацию или замену фильтрующего материала.

Деманганация воды

Деманганация воды - это удаление ионов марганца. Деманганация производится практически теми же метода­ми, что и обезжелезивание. Однако в большинстве случаев следует использовать сильные окислители, т. к. марга­нец чаще всего образует органические соединения. Если железо и марганец содержатся в сырой воде в очень боль­ших концентрациях, целесообразно осуществлять обработку воды в несколько стадий.

Известные в технологии улучшения качества воды методы ее деманганации можно классифицировать на безреагентные и реагентные; окислительные, сорбционные, ионообменные и биохимические.

К числу безреагентных методов удаления марганца из воды следует отнести: глубокую аэрацию с последующим отстаиванием (вариант) и фильтрованием на скорых осветительных фильтрах с сорбцией марганца на свежеобра­зованном гидрооксиде железа.

К числу реагентных методов деманганации воды, прежде всего, относятся окислительные с использованием хлора и его производных, озона, перманаганата калия, кислорода.

Обработка перманганатом калия

Наиболее эффективным и технологически простым методом удаления марганца из вод поверхностных и под­земных источников в настоящее время является обработка их перманганатом калия. Метод основан на способно­сти перманганата калия окислять содержащийся в воде марганец (II) с образованием малорастворимого оксида марганца.

При обработке воды перманганатом калия снижение привкусов и запахов происходит также вследствие частич­ной сорбции органических соединений образующимся мелкодисперсным хлопьевидным осадком оксида марганца. Применение перманганата калия дает возможность удалить из воды как марганец, так и железо независимо от форм их содержания в воде.

Использование катализаторов окисления марганца

Установлено, что предварительно осаженные на поверхности зерен фильтрующей загрузки оксиды марганца оказывают каталитическое влияние на процесс окисления иона марганца (II) растворенным в воде кислородом. При фильтровании аэрированной и подщелоченной (при низких рН) воды, содержащей марганец, через песчаную за­грузку по прошествии некоторого времени на поверхности зерен песка образуется слой, состоящий из гидроксида марганца Мn(ОН)4, который адсорбирует положительно заряженные ионы марганца (II). Гидролизируясь, эти ионы реагируют с осадком Мn(ОН)4, образуя хорошо окисляемый полутораоксид Мn2O3.

Таким образом, в результате снова образуется гидроксид марганца (IV), который опять участвует в процессе оки­сления в качестве катализатора. Использование этого свойства оксидов марганца дало возможность применить в практике кондиционирования воды метод ее фильтрования через песок, зерна которого предварительно покрыты пленкой оксида марганца (так называемый «черный песок»). Для этого обычный кварцевый песок крупностью 0,5­1,2 мм обрабатывают последовательно 0,5%-ным раствором хлорида марганца и перманганата калия.

Деманганация воды фильтрованием через модифицированную загрузку

Предыдущий метод фильтрования аэрированной воды через загрузку, обработанную оксидами марганца, име­ет ряд недостатков, заключающихся в следующем:

-  постепенном измельчении частиц, образующих покрытие зерен загрузки, при работе фильтра и проскоке их в фильтрат;

-  значительный расход перманганата калия.

Для исключения указанных недостатков был запатентован метод деманганации воды фильтрованием через мо­дифицированную загрузку, приготавливаемую последовательным пропуском снизу вверх через кварцевый песок растворов железного купороса и перманганата калия, что позволяет достичь экономии последнего. Для закрепле­ния образующей пленки из гидроксида железа и оксида марганца на зернах фильтрующей загрузки последнюю за­тем дополнительно обрабатывают тринатрийфосфатом или сульфитом натрия.

Умягчение воды

С жесткой водой сталкивается каждый, достаточно вспомнить о накипи в чайнике. В жесткой воде хуже пенит­ся стиральный порошок и мыло. Жесткая вода не годится при окрашивании тканей водорастворимыми красками, в пивоварении, производстве водки, негативно влияет на стабильность майонезов и соусов. Чай и кофе тоже луч­ше заваривать мягкой водой.

Жесткость воды определяется суммарным содержанием в ней растворенных солей кальция и магния. Гидрокарбонаты кальция и магния образуют карбонатную или временную жесткость воды, которая полностью устраняется при кипячении воды в течение часа. В процессе кипячения растворимые гидрокарбонаты переходят в нераствори­мые карбонаты, выпадающие в виде белого осадка или накипи, с выделением при этом углекислого газа. Соли же сильных кислот, например, сульфаты и хлориды кальция и магния - образуют некарбонатную или постоянную же­сткость, не изменяющуюся при нагревании воды.

Высокая гидрокарбонатная (временная) жесткость воды делает её непригодной для питания котлов и бой­леров. Стенки котлов постепенно покрываются слоем накипи. Слой накипи в 1,5 мм снижает теплоотдачу на 15%, а слой толщиной 10 мм - снижает теплоотдачу уже на 50%. Снижение теплоотдачи ведет к увеличению расхода топлива или электроэнергии.

Распространено мнение, что жесткая вода - это плохая вода. В действительности ситуация с солями жесткости не так однозначна. Чрезмерная мягкость воды, с другой стороны, является одним из основных факторов, влияющих на её коррозионную активность. Коррозия ведет не только к утечкам в металлических трубопроводах, разрушению и поломке оборудования, но и к ухудшению химического и микробиологического состава воды в водопроводе.

В тех случаях, когда вода слишком жесткая и её необходимо умягчить, применяют следующие методы - терми­ческий, дистилляцию или вымораживание, реагентный, ионообменный, комбинированный, представляющий собой различные сочетания перечисленных методов.

Термический способ связан с нагревом воды, снижает только временную (карбонатную) жесткость. В бытовых условиях этот способ применяет каждая хозяйка, кипятя воду; в промышленности этот метод практически не при­меняют.

Реагентное умягчение воды производится за счет добавления в воду соды или гашеной извести. При этом ио­ны кальция и магния переходят в нерастворимые соединения, выпадающие в виде осадка. Реагентный метод хо­рош только для больших станций водоподготовки, поскольку связан с рядом специфических проблем: утилизации твердого осадка, необходимости точной дозировки химикатов и их правильной подачи в исходную воду.

Умягчение воды катионированием: наиболее широкое распространение получили установки умягчения воды с ионообменной смолой. Ионообменные смолы при контакте с водой поглощает ионы кальция и магния, отдавая вза­мен ионы натрия или водорода, называясь соответственно, Na-катионитовой и Н-катионитовой. Na-катионитовые загрузки регенерируются раствором поваренной соли (NaCI) или сернокислого натрия (Na2S04). Н-катионитовые за­грузки регенерируют раствором серной (H2SO4) или соляной (НСl) кислот.

При регенерации происходит обратный ионный обмен - ионы кальция и магния удаляются из катионита, кото­рый вновь насыщается ионами натрия или водорода. Частота регенерации рассчитывается исходя из жесткости ис­ходной воды, водопотребления и емкости катионита по отношению к солям жесткости.

Натрий-катионирование применяют для умягчения воды с содержанием не более: взвеси - 8 мг/л, цветностью - 30 град платиново-кобальтовой шкалы, солесодержания 1000 мг/л, окисляемостью перманганатной - 5 мгО/л. Жесткость воды снижается при параллельноточном одноступенчатом катионировании - до 0,05-1,0 ммоль/л, при двухступенчатом до 0,005-0,02 ммоль/л. Показатель жесткости зависит от многих факторов, в том числе от скорости фильтрования, ис­ходной минерализации воды и т.д. По мере протекания воды через слой катионита, ранее заряженный ионами натрия, последние замещаются ионами кальция и магния, то есть катионит «истощается». Тогда его следует регенерировать. Ре­генерация Na-катионита достигается фильтрованием через него раствора хлорида натрия (поваренной соли).

Поваренную соль применяют для регенерации из-за ее доступности, дешевизны, а также вследствие того, что получают при этом хорошо растворимые соли, легко удаляемые с регенерационным раствором и от­мывочной водой.

Метод умягчения, при котором подача фильтруемой воды и регенерирующего раствора осуществляется в про­тивоположных направлениях, называется противоточным катионированием. При таком способе фильтруемая вода соприкасается с наиболее полно отрегенерированными слоями катионита, благодаря чему обеспечивается более глубокое умягчение воды. При этом значительно снижается расход реагентов на регенерацию катионита без умень­шения глубины умягчения.

Водород-катионирование (Н-катионирование) основано на фильтровании воды через слой катионита, содержа­щего в качестве обменных ионов ион водорода. При Н-катионировании воды значительно снижается ее рН из-за ки­слот, образующихся в фильтрате. Н-катионирование чаще используют для удаления “временной” карбонатной же­сткости, т. е. происходит “декарбонизация” воды. Выделяющийся при Н-катионировании оксид углерода (IV) мож­но удалить дегазацией, и в растворе останутся минеральные кислоты в количествах, эквивалентных содержанию сульфатов и хлоридов в исходной воде. Некарбонатная жесткость - называемая также «остаточная» жесткость - при этом остается. Следовательно, пропорционально смешивая кислый фильтрат после Н-катионитовых фильтров со щелочным фильтратом после Na-катионитовых фильтров, можно получить умягченную воду с различной щелоч­ностью. В этом заключается сущность и преимущество Н-Na-катионитового метода умягчения воды. Применяют па­раллельное, последовательное и смешанное (совместное) Н-Na-катионирование.

Выбор метода умягчения воды определяется ее качеством, необходимой глубиной умягчения и технико-эконо­мическими соображениями. В соответствии с рекомендациями СНиП при умягчении подземных вод следует приме­нять ионообменные методы; при умягчении поверхностных вод, когда одновременно требуется и осветление воды

-   известковый или известково-содовый метод, а при глубоком умягчении воды - последующее катионирование.

Катиониты и их свойства

Катиониты по составу разделяют на минеральные и органические, которые, в свою очередь, делят на естествен­ного и искусственного происхождения.

В технологии подготовки воды широко применяют органические катиониты искусственного происхождения. Они содержат функциональные химически активные группы, подвижные ионы которых (водород, натрий, аммоний, калий) способны замещаться другими катионами. В зависимости от содержащейся функциональной группы катио­ниты делят на сильнокислотные и слабокислотные. Сильнокислотные катиониты обменивают катионы в щелочной, нейтральной и кислой средах, слабокислотные - только в щелочной среде.

Если подвижные ионы функциональных групп имеют положительные заряды, ионит обладает катионообменны­ми, а если отрицательные - анионообменными свойствами.

Качество катионитов характеризуется их физическими свойствами, химической и термической стойкостью, ра­бочей обменной емкостью и др. Физические свойства катионитов зависят от их фракционного состава, механиче­ской прочности и насыпной плотности (набухаемости). Фракционный (или зерновой) состав характеризует эксплу­атационные свойства катионитов. Оптимальные размеры зерен катионита принимают в пределах 0,3 ...1,5 мм.

Механическая прочность, термическая и химическая стойкость имеют важное значение для установления изно­са катионитов в процессе эксплуатации и выбора марки катионита. Неправильный выбор катионита может приве­сти к измельчению его при фильтровании и взрыхлении. Кроме того, при высокой температуре обрабатываемой во­ды и повышенных значениях кислотности или щелочности, катиониты способны пептизироватъся, т. е. переходить в состояние коллоидного раствора и терять обменную способность.

Различают полную и рабочую обменную емкость катионита. Полной обменной емкостью называют то количество катионов кальция и магния, которое может задержать 1 м3 катионита, находящийся в рабочем состоянии, до того мо­мента, когда жесткость фильтрата сравнивается с жесткостью исходной воды. Рабочей обменной емкостью катиони­та называют то количество катионов Са2+ и Mg2+, которое задерживает 1 м3 катионита до момента "проскока" в фильт­рат катионов солей жесткости. Обменную емкость, отнесенную ко всему объему катионита, загруженного в фильтр, называют емкостью поглощения. Рабочая обменная емкость катионита зависит от вида извлекаемых из воды катио­нов, соотношения солей в умягчаемой воде, значения рН, высоты слоя катионита, скорости фильтрования, режима эксплуатации катионитовых фильтров, удельного расхода регенерирующего реагента и от других факторов.

Каждый катионит обладает определенной обменной емкостью. Обменную емкость катионита измеряют в грамм-эквивалентных задержанных катионов на 1 м3 катионита, находящегося в набухшем (рабочем) состоянии, т. е. в та­ком состоянии, в котором катионит находится в фильтре.

При пропуске воды сверху вниз через слой катионита происходит ее умягчение, заканчивающееся на некоторой глуби­не. Слой катионита, умягчающий воду, называют работающим слоем или зоной умягчения. При дальнейшем фильтровании воды верхние слои катионита истощаются и теряют обменную способность. В ионный обмен вступают нижние слои катио­нита, и зона умягчения постепенно опускается. Через некоторое время наблюдаются три зоны: работающего, истощенного и верхнего катионита. Жесткость фильтрата будет постоянной до момента совмещения нижней границы зоны умягчения с нижним слоем катионита. В момент совмещения начинается "проскок" катионов Са2+ и Мg2+ и увеличение остаточной жестко­сти, пока она не станет равной жесткости исходной воды, что свидетельствует о полном истощении катионита.

Физические методы умягчения воды

Отдельно стоят физические методы умягчения воды: магнитный, ультразвуковой, электромагнитное воздей­ствие с переменной частотой. Химический состав воды при этом не меняется.

Электромагнитная обработка с переменной частотой

В основе технологии обработки воды положен принцип изменения формы кристалла карбоната кальция под действием электромагнитных волн (диапазон применяемых частот 1-10Гц). Эти волны абсолютно безвредны для человека. Под действием электромагнитных волн меняется структура кристаллов накопившихся отложений накипи. Преобразованная в хрупкие кристаллы накипь легко смывается с поверхностей и выносится потоком. Специфика такого метода заключается в том, что кристаллическая решетка восстанавливается через 5-6 дней после прекраще­ния воздействия. Свойства умягченной воды утрачиваются. Они восстанавливаются при повторной обработке. Не требуется реагентов, дренажных каналов, отсутствуют стоки. Метод эффективен при обработке вод кальциево-кар­бонатного класса, которые составляют около 80% вод всех водоемов нашей страны и охватывают примерно 85% ее территории.

Обеззараживание воды

Обеззараживание воды имеет важное значение и почти повсеместное применение, так как это последний барьер на пути передачи связанных с водой бактериальных и вирусных болезней. Обеззараживание воды является заклю­чительным этапом подготовки воды питьевой кондиции. Использование для питья подземной воды в большинстве случаев возможно без обеззараживания.

Обычными методами обеззараживания являются:

- хлорирование путем добавления хлора, диоксида хлора, гипохлорита натрия или кальция;

-  озонирование воды;

-  ультрафиолетовое облучение.

Конкретный способ обеззараживания определяется с учетом производительности и затрат.

 

обеззараживание ультрафиолетом

Ультрафиолетовое облучение

Обеззараживающий эффект ультрафиолетового излучения обусловлен фотохимическими реакциями, в результате которых происходят необратимые изменения в структуре молекул ДНК и РНК. В современных УФ- устройствах применяют излучение с длиной волны 253,7 нм. При у/ф-облучении не изменяются физико-хи­мические показатели качества воды, привкус и запах. Процесс стерилизации проходит без добавления в во­ду каких-либо химикатов. В мировой практике требования к минимальной дозе облучения варьируются от 16 до 40 мДж/см2. Российские нормативы для питьевой воды предписывают осуществлять обеззараживание из­лучением, доза которого составляет не менее 16 мДж/см2; при этом качество воды до УФ-обработки должно соответствовать требованиям СанПиН 2.1.4.1074-01.

Обратный осмос

Процесс самопроизвольного перетекания веществ через полупроницаемую мембрану, разделяющую два ра­створа различной концентрации или чистый растворитель и раствор, называется осмосом. При осмосе менее кон­центрированный раствор перетекает в более концентрированный, до тех пор, пока концентрации растворов по обе стороны мембраны не выравняются.

Предложено несколько гипотез, объясняющих некоторые факторы осмоса, но единой теории пока нет.

Если со стороны протекающей через аппарат природной воды с некоторым содержанием примесей приложить давление, превышающее осмотическое давление, то вода будет просачиваться через мембрану и скапливаться по другую ее сторону, а примеси - оставаться с исходной водой, увеличивая ее концентрацию. Этот процесс и техно­логия названы обратным осмосом (или, как ранее называли, гиперфильтрация).

Явление осмоса лежит в основе всасывания растениями питания из почвы.

С помощью этого метода можно проводить опреснение воды. В нормальных условиях эффект опреснения со­ставляет 95-98%. Разделение воды и содержащихся в ней веществ достигается с помощью полупроницаемой мем­браны. Современные обратноосмотические мембраны - композитные - состоят из нескольких слоев. Общая тол­щина 10-150 мкм, причем толщина собственно селективного слоя, который определяет селективность мембраны - не более 1 мкм. Сами мембраны изготавливаются из полимерных материалов: целлюлозы и ее эфиров, полиами­дов, полиолефинов, сополимеров акрилонитрила с винилхлоридом, поливинилхлорида и выпускаются в виде по­лых волокон или рулонного типа. Через микроскопически малые поры этих мембран может проникать чистая вода, а растворенные в ней соли, микроорганизмы, органические соединения и т. д. в основном задерживаются мембра­ной.

На стадии предварительной обработки воды следует ее отфильтровать и при необходимости очистить от хло­ра. Для бытовых мембранных фильтров, где, как правило, в качестве исходной используется водопроводная во­да, предочистка перед мембранами упрощается, но в любом случае необходимы патронные фильтры с пористо­стью 5 мкм.

Фильтрация на активных углях

Фильтрование на активных углях чаще всего применяется на последней ступени очистки и является предпочти­тельным способом улучшения качества питьевой воды. Такое дополнительное осветление воды необходимо в тех случаях, когда требуется устранить незначительные нарушения показателей цветности, вкуса и запаха воды.

Яндекс.Метрика